Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate.
نویسندگان
چکیده
During locomotion, reflex responses to sensory stimulation are usually modulated and may even be reversed. This is thought to be the result of phased inhibition, but the neurons responsible are usually not known. When the hatchling Xenopus tadpole swims, responses to cutaneous stimulation are modulated. This occurs because sensory pathway interneurons receive rhythmic glycinergic inhibition broadly in phase with the motor discharge on the same side of the trunk. We now describe a new whole-cell recording preparation of the Xenopus tadpole CNS. This has been used with neurobiotin injection to define the passive and firing properties of spinal ascending interneurons and their detailed anatomy. Paired recordings show that they make direct, glycinergic synapses onto spinal sensory pathway interneurons, and the site of contact can be seen anatomically. During swimming, ascending interneurons fire rhythmically. Analysis shows that their firing is more variable and not as reliable as other interneurons, but the temporal pattern of their impulse activity is suitable to produce the main peak of gating inhibition in sensory pathway interneurons. Ascending interneurons are not excited at short latency after skin stimulation but are strongly active after repetitive skin stimulation, which evokes vigorous and slower struggling movements. We conclude that ascending interneurons are a major class of modulatory neurons producing inhibitory gating of cutaneous sensory pathways during swimming and struggling.
منابع مشابه
Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion
In the vertebrate spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic neurons whose functions are only beginning to unfold. Recent evidence indicates that CSF-cNs detect local spinal bending and relay this mechanosensory feedback information to motor circuits, yet many CSF-cN targets remain unknown. Using optogenetics, patterned illumination, and in vivo electrophysiolog...
متن کاملState-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons
The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connectivity of a class of GABAergic sensory neurons contacting the CSF in the vertebrate spinal cord and referred to as CSF-cNs. The remote activation o...
متن کاملDorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
In mammals, sensory projection pathways are provided by just three classes of spinal interneuron that develop from the roof-plate. We asked whether similar sensory projection interneurons are present primitively in a developing lower vertebrate where function can be more readily studied. Using an immobilized Xenopus tadpole spinal cord preparation, we define the properties and connections of sp...
متن کاملPlasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions.
The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves) to highlight the spinal neuroplasticity necessary for adapting to sensory loss. Recent work on plas...
متن کاملStep training-dependent plasticity in spinal cutaneous pathways.
Plasticity after spinal cord injury can be initiated by specific patterns of sensory feedback, leading to a reorganization of spinal networks. For example, proprioceptive feedback from limb loading during the stance phase is crucial for the recovery of stepping in spinal-injured animals and humans. Our recent results showed that step training modified transmission from group I afferents of exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2002